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Abstract

A conlrols-structures interaction design method is presented. The method coordinates standard finite-element

structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization

of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling

between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large

number of design variables and a high degree of coupling between disciplines.

The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary

optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and

feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and

the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the non-negligible

mass of actuators causes an essential coupling between structural design variables and control design variables.

Nomenclature

CEC

CSI

_x G t

EAL

 06r
GSE

i
J
Ma

Ms

Mt
n

collocated elastic control

controls-structures interaction

partial derivative of y with respect to

x, evaluated at the global level or the local level

Engineering Analysis Language

position- and rate-gain matrices used to define collocated elastic control law
global sensitivity equations

vector of 12 design variables used to define Gp and _ matrices

Identity matrix

spacecraft inertia matrix, kg-m 2
total mass of vibration suppression actuators, kg

total mass of truss structure, kg

Ms + Ma

number of modes used in reduced-order model of spacecraft



obj

x

Y

--,.2

objective function

vector of design variables used to define radii of truss-element cross section, m

arbitrary design variable, x _ {_,g}

arbitrary constraint function

required vibration decay rate

2n x 1 vector of closed-loop eigenvalues, rad2/sec 2

3 x n mode-slope matrix that contains rotational components of structural eigenvectors; superscript

0 indicates maneuver actuator location and superscripts 1 and 2 indicate first and second vibration-

suppression-actuator locations

n x 1 vector of natural eigenvalues of the structural model, rad2/sec 2

Introduction

Vibrations of a space structure reduce the accuracy of precision instruments mounted on it. Future structures

will be built with control systems to damp out any excited vibrations. Preliminary design of these structural

systems is complicated by the coupling between the structure and the control system. Changes in either modify

both the plant to be controlled and the expected excitation. Determining the trade-offs between structural design

parameters and control design parameters is a fundamental problem facing control-structure analysts. Preliminary

design of controlled space structures falls under NASA's Controls-Structures Interaction (CSI) Technology

Program. 1

One aspect of the CSI program is to exploit advances in structural analysis, multivariable control and

multidisciplinary optimization in the preliminary design of large, flexible spacecraft. Recent work on the

preliminary design process has seen the development of procedures to reduce surface distortion errors for large space

antennas, tailor structures and control systems for reduced power consumption, and improve the fine-pointing

performance of large space platforms while reducing mass. 2, 3, 4, 5

Reference 6 introduces a general optimization-based design methodology concept that takes full advantage of

opportunities to tailor the structure and control system as a single system. The design concept is to divide a coupled

system engineering problem into subsystems and use the Global Sensitivity Equations (GSE) to provide for the

coupling between the subsystems when calculating system sensitivity derivatives. 7, 8 The example used to

demonstrate the concept was the preliminary design of the structure and the vibration suppression controller for a

geostationary platform subjected to a slewing maneuver. The use of varying, non-negligible control actuator mass

coupled the structural and controls analyses by influencing the structural dynamic characteristics of the model and the

applied excitation maneuver. It also limited the maximum torque available for vibration suppression. The results

showed that the method would work for small, academic type problems, as the entire structural model was

represented by only three structural design variables.
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This paper reports on the continuing development of the concept into a viable engineering tool. Brief

discussions of the design methodology, the techniques used, and the example problem are presented. Typical results

including computer execution times from several cases are presented and discussed.

Multidisciplinary Optimization Procedure

CSI Design Method Using Global Sensitivity Equations

Only a brief description of the method used is given below. A full description and comparisons to other

methods is presented in reference 6.

The global system to be analyzed and optimized is broken into two subsystems, represented in Figure 1. The

subsystems are coupled, e.g., outputs from one are inputs to the other. The subsystems analyses must iterate until

the shared information converges to stable values. Figure 2 presents an approximation technique, based on structural

derivatives, that was used to reduce the computer execution time required to achieve a converged solution.

Figure 3 is a block diagram of the method used to perform the preliminary design. Block 1 is the internally

coupled system of Figure 1. The second block of Figure 3 indicates that after obtaining a converged solution, with

all subsystem quantities shown inside the box in Figure 1 having known values, each subsystem calculates

derivatives of its output responses with respect to its input quantifies. At this stage, the subsystems were treated as

independent, with subsystem coupling effects to be calculated later. The structural derivatives were calculated semi-

analytically, while the controls derivatives were calculated by finite differences.

The GSE are represented by the third block of Figure 3. All uncoupled subsystem derivatives from the

previous block are input to the GSE. The solution of the GSE gives the sensitivity derivatives of the system output

responses with respect to the system design variables.

The baseline, converged solution calculated in block 1 and the system sensitivity derivatives calculated in

block 3 are used in a linear extrapolation routine coupled with an optimizer to perform the optimization step in

block 4. The optimization step is limited in the amount it can change the design variables to protect the validity of

the information from the linear extrapolation. One pass through each of the blocks constitutes a cycle and the

process continues to cycle until an optimal solution is found.

Structure and Structural Analysis

The geometry of the reference configuration is shown in Figure 4. The size and shape of the platform does

not change during optimization. Its finite element model consists of 10 bays that are 3.0 meters long by 1.5 meters

wide and high. Figure 5 indicates how beam elements are connected to form a bay. All beam elements are tubes

with a constant wall thickness of 0.159 cm and the outside diameters are controlled by structural design variables

through design variable linking, e.g., a design variable may specify the outer diameter of more than one beam

element. The bays on each end of the bus include eight extra members to support the vibration suppression

actuators located at the center of the bay. The actuators are modeled as point masses.

° 3



The flat, circular antennas with diameters of 7.5 and 15 meters are formed with 12 radial and 12

circumferential beam elements. These elements are also tubes with a constant wall thickness of 0.159 cm and outer

diameters controlled by design variables.

The Engineering Analysis Language (EAL) computer code was used to perform the structural analysis. 9

Processors were written to transform the current structural design variables into beam section properties. EAL

procedures were then used to calculate the structural mass, Ms, the inertia matrix, J, and the first 20 elastic undamped
--.*2 "*

vibration frequencies, o) , mode shapes and mode slopes, _. Partial derivatives of these responses were calculated

using semi-analytical techniques. 10, 11

Controls Analysis

The control analysis determines the transient closed-loop response of the spacecraft to a reference maneuver

and searches for the maximum vibration control torques and the times at which they occur. The maneuver represents

a typical disturbance that might be encountered by a geostationary platform. However, the response is assumed to be

linear and nonlinear coupling of rigid and elastic motion is not modeled.

The vibration suppression system uses collocated elastic control (CEC) with a single pair of actuators

constrained such that their net torque output is zero. The robust dissipative control law used by CEC does not affect

rigid body motion and guarantees stability despite unmodeled dynamics and parameter uncertainty. 12, 13, 14 The

torque required by the CEC actuators is a function of the angular deformations and angular deformation rates at the

actuator locations and the values of the 12 design variables, g, which uniquely determine the position gain matrix,

Gp, and the rate gain matrix, G r.

The actuators are sized based on the peak torques required to suppress the elastic motion that remains after the

reference maneuver. The mass of the actuators is determined from an assumed linear relationship between actuator

mass and the maximum torque o._utput. Outputs from the control analysis are the actuator mass, Ma, and the

complex closed loop eigenvalues, _..

Global Sensitivity Equations

The GSE are determined by recognizing that the information needed for subsequent optimization is the

sensitivities of the structural mass, the actuator mass and the closed loop eigenvalues to changes in the design

variables. These sensitivities are the coefficients of the total differentials of the system outputs, i.e.

= _r G _g G

dM a 3_M_ d_+_M__ d_g
=--_-r G 3g G

d_,= _--- d?+-- dg"
a-_IG a_" IG

d)
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where G denotes that the derivatives are evaluated at the system, or global, level. Or, written in matrix form,

°Ms/
d_.

m

-_-rG o_g G

-3ff-r G c]g G

ar G ag G

dg'j
(2)

These system derivatives include the coupling effects present in the system.

At a converged coupled analysis point, all inputs and outputs of the subsystems are known. This fact allows

treating the subsystems independently for the calculation of the derivatives of the subsystem outputs at that point.

These local derivatives do not include any coupling effects, and cannot be used to predict the system response.

To account for the system coupling using the information available, each subsystem's total differentials may

be written,

t _Ma z

dJ= aJ[ d_'+ _9_ dMaar I 8Ma z

e_= 8_ d_+ 3_°1 dMa
ar z aMal t

d; =_---_ d?+ _--_ dMa
a_l aMalz

(3)

and

aj z ao_ z ae z ag z

dS=

aj I_ ao_lt a_lt ag It
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where t denotes that the derivatives are evaluated at the subsystem, or local, level and do not include coupling effects.

Upon examining eqns. (3), it can be noted that each differential is a differential of a subsystem output or a system

input. The equations are rewritten to put the subsystem output differentials on the left hand side and the system

input differentials on the right hand side, giving

dJ o-)Mal9 Ma ar I t

arl,

d; - aMal ealma -- d-_
arl_

d_.- dJ - d_- d_ = dg

aJi, ao)l, ael, agl,

or, written in matrix form

i 0 0 0

o i o o

o o i o

o o o i

o _-_-_
-aJIL amlt a¢)

o
aJlt ao_l_ _¢

0
-aMall

_a_Zl o
aM_ll

-a-_l o
aM_lt

-_ o
aM_l_

i o
t

o i
l

d_ =

d_
d_

.a__ o

atl_

atl_

-_-_r t 0

o _

dg J

(4)

(5)



The coefficient matrix on the left hand side is the Global Sensitivity Matrix (GSM) and the off-diagonal terms

represent the system coupling. Multiplying eqn. (5) by the inverse of the GSM and rearranging the rows and

columns gives, after partitioning,

I dMs '

dMa

dZ

dJ

-.=.

do)

d_

-Ma'r'xll== ......

Matrix I dg J (6)

By comparing eqn. (6) to eqn. (2), it can be seen that Matrix 1 is the matrix of derivatives evaluated at the global

level.

Optimization

The optimization problem is to find the system design variable vector that minimizes the total mass of the

platform while satisfying vibration decay requirements. The design variables used in this study were the 12 entries

that uniquely defined the position and rate gain matrices and the radii that defined the beam elements. Several

examples are given using design variable linking so that different numbers of radii are used to define the beam

elements. The problem can be stated as

subject to

minimize MT = Ms + Ma

Re(_)_<8 i=1,2 ..... 2n

(7)

where Re(_) is the real part of the complex eigenvalues, 8 is the required decay rate and n is the number of modes

used in the reduced order model of the spacecraft. The derivatives calculated using the GSE are used to provide linear

approximations to the system responses that are used to calculate the objective function and the constraint functions

as given below,

obj (x) = Mr



,_-1Re i= 1,2,..., 2n

(8)

where Yi -<0 is a feasible constraint and the required decay rate, 8, is a negative number. The effect of changing an

arbitrary design variable xj by the amount Axj is approximated by

obj (xj + Axj) = Ms + (3Ms z_(j + Ma ()Ma
b_xj G +-_-xj G Axi

yi (xj + Axj) = 1- G

(9)

The solution of the optimization problem is accomplished by linking the linear approximation routine with

the nonlinear programming code CONMIN (ref. 15).

Results and Discussion

Overview of the Test Cases

In each test case, the decay rate requirement is 5 = -0.03. The reference maneuver rotates the spacecraft 20 °

about each axis simultaneously in 10 seconds. The initial values of the 12 control design variables gave the

following position and rate gain matrices

Gp = Gr=

5100 800 700

800 5000 7000

700 700 4900

(10)

Additionally, all design variables were constrained to a maximum of 10% change in each cycle.

Typical optimization results starting from an infeasible design show a rapid increase in the objective function

until the constraints are satisfied. In each of the test cases below, the objective function is increased moderately until

the constraints are satisfied. Previous results presented in Ref. 6 do show the characteristic rapid increase; therefore,

the moderate increase is not a characteristic of the method, but possibly of the chosen starting points.

Test Case 1: 15 Global Design Variables

In addition to the 12 control matrix entries, three design variables were used to control the beam element

sizes. One design variable controlled all members in the bus structure, one controlled all antenna members and one

controlled all antenna support members. Results from this case are presented in figures 6 and 7.
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The method was able to reach an optimum design in 22 cycles. The percentage of the total mass contributed

by the control system increased from 0.8% to 7.5%.

Test Case 2: 63 Global Design Variables

An additional 51 design variables were used to size the beam elements. A separate design variable defined the

radii of the members of each cross-section frame, the cross-section diagonal, the stringers in each bay and the

diagonals in each bay. Also, a separate design variable controlled the sizes of the inner spokes, outer spokes and ring

members of each antenna. The elements of the two antenna support groups were controlled by separate design

variables. Figures 8 and 9 present the results for this case.

This ease also needed 22 cycles to reach an optimum design. The control system mass increased from 0.8%

to 8.2% of the total mass.

Test Case 3: 150 Global Design Variables

Each of the 135 individual beam elements in the bus structures was controlled by an individual design

variable. All members in the antennas were controlled by one design variable as was the antenna support elements

and the control actuator support elements. Results are presented in Figures 10 and 11.

An optimum design was found in 26 cycles. The mass contributed by the control system increased from

0.7% to 4.1% of the total mass.

Figure 12 shows the typical cycle history of three design variables. These design variables control members

of the third cross sectional frame from the end with the large antenna. In this case, each design variable represented

only a small fraction of the total system. Random changes in the design variables were expected, indicating that

individual design variables were too insignificant to affect the optimization algorithm. The consistent changes in the

design variable values show that the system sensitivities calculated by using the GSE had significant magnitudes and

were not prone to numerical errors. These results were typical of all 135 structural design variables.

Computer Execution Times

The test cases were run on a Convex 220 computer. In all cases, the time required to perform the cycle's

optimization step was less than 5 seconds. The 15 design variable case required an average of 1460 seconds to

calculate the converged solution and global sensitivity derivatives. It is estimated that it would require 2210 seconds

to calculate the same information by global finite differences. The 63 design variable case used an average 4610

seconds for the calculations, while an estimated 9540 seconds would be required by global finite differencing.

Timing data was not available for the 150 design variable case.

The estimates for global finite differencing were obtained by adding the average times for a structural analysis

and a controls analysis and multiplying by the number of design variables plus 1. The values calculated

underestimate the actual values in that no estimate for the time required to obtain a converged baseline solution was

included.



Concluding Remarks

This paper describes the development and implementation of a general optimization-based method for the

design of large space platforms through integration of the disciplines of structural dynamics and controls. The

method is especially appropriate for preliminary design problems in which the structural and control analyses are

tightly coupled. The method is significant because it coordinates general-purpose structural analysis, multivariable

control, and optimization codes and thus can be adapted to a variety of controls-structures integrated design (CSID)

projects. The method uses the global sensitivity equations (GSE) approach.

To demonstrate its capabilities the method is used to minimize the total weight of a space platform while

maintaining a specified vibration decay rate after slewing maneuvers. Although the structural model has many

simplifying assumptions and the number and location of actuators are fixed, the number of design variables used in

the example cases is representative of practical design problems. With the CSID procedure, the platform is

redesigned so that the mass distribution and dynamic characteristics of the structure enhance the use of rate and

position feedback by the control system. The CSID method must trade stiffness that adds structural weight for

control effort that adds weight to the actuators. The procedure not only trades structural mass for control effort, but

also satisfies the vibration decay rate constraints.
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Fig, 6: Cycle History of the Objective Function • Case 1
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Fig. 8: Cycle History of the Objective Function: Case 2
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Fig. 12: Cycle History of Selected Structural Design Variables:
Case 3
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